Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.452
1.
BMC Genomics ; 25(1): 478, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745294

BACKGROUND: Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS: In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS: We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION: This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.


Mycobacterium tuberculosis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Genome, Bacterial , Humans , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Mutation , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics
2.
Sci Rep ; 14(1): 10455, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714745

Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.


Mycobacterium tuberculosis , Ethiopia/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Humans , Female , Male , Adult , Middle Aged , Adolescent , Young Adult , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/epidemiology , Tuberculosis/microbiology , Bacterial Typing Techniques
3.
Nat Commun ; 15(1): 4065, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744895

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Anti-Bacterial Agents , Bacterial Proteins , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolysis , Proteolysis/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Humans , Microbial Sensitivity Tests , Machine Learning
4.
Elife ; 132024 May 13.
Article En | MEDLINE | ID: mdl-38739431

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Bacterial Proteins , Cyclic AMP , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Stress, Physiological , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Cyclic AMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Viability , Macrophages/microbiology , Macrophages/metabolism
5.
Sci Rep ; 14(1): 10904, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740859

Tuberculosis (TB), caused by Mycobacterium tuberculosis, ranks among the top causes of global human mortality, as reported by the World Health Organization's 2022 TB report. The prevalence of M. tuberculosis strains that are multiple and extensive-drug resistant represents a significant barrier to TB eradication. Fortunately, having many completely sequenced M. tuberculosis genomes available has made it possible to investigate the species pangenome, conduct a pan-phylogenetic investigation, and find potential new drug targets. The 442 complete genome dataset was used to estimate the pangenome of M. tuberculosis. This study involved phylogenomic classification and in-depth analyses. Sequential filters were applied to the conserved core genome containing 2754 proteins. These filters assessed non-human homology, virulence, essentiality, physiochemical properties, and pathway analysis. Through these intensive filtering approaches, promising broad-spectrum therapeutic targets were identified. These targets were docked with FDA-approved compounds readily available on the ZINC database. Selected highly ranked ligands with inhibitory potential include dihydroergotamine and abiraterone acetate. The effectiveness of the ligands has been supported by molecular dynamics simulation of the ligand-protein complexes, instilling optimism that the identified lead compounds may serve as a robust basis for the development of safe and efficient drugs for TB treatment, subject to further lead optimization and subsequent experimental validation.


Antitubercular Agents , Drug Design , Mycobacterium tuberculosis , Proteomics , Tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Proteomics/methods , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phylogeny , Molecular Docking Simulation , Molecular Dynamics Simulation , Genomics/methods
6.
Microbiology (Reading) ; 170(5)2024 May.
Article En | MEDLINE | ID: mdl-38717801

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Adaptation, Physiological , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/physiology , Hydrogen-Ion Concentration , Animals , Humans , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/microbiology , Virulence , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antitubercular Agents/pharmacology
7.
Front Public Health ; 12: 1337357, 2024.
Article En | MEDLINE | ID: mdl-38689770

Introduction: A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods: A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results: A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion: This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.


Genotype , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Ecuador/epidemiology , Humans , Prevalence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Genetic Variation , Antitubercular Agents/pharmacology , Adult , Male , Female , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Adolescent
8.
PLoS One ; 19(5): e0301210, 2024.
Article En | MEDLINE | ID: mdl-38709710

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Nepal/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Cross-Sectional Studies , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Middle Aged , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Rifampin/therapeutic use , Rifampin/pharmacology , Isoniazid/therapeutic use , Isoniazid/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Adolescent , Aged
9.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702782

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , China/epidemiology , Humans , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Prevalence , Nitroimidazoles/pharmacology , Genotype , Mutation , Whole Genome Sequencing
10.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741147

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Antigens, Bacterial , Cell Proliferation , Mycobacterium tuberculosis , T-Lymphocytes , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology
11.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731549

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Biosynthesis , Peptide Elongation Factors/metabolism , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Ribosomes/metabolism , Models, Molecular , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/metabolism , Protein Conformation
12.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740636

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


ATP Binding Cassette Transporter 1 , RNA, Messenger , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Female , Male , India , Adult , RNA, Messenger/genetics , RNA, Messenger/metabolism , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mycobacterium tuberculosis/genetics , Case-Control Studies , Receptors, Steroid/genetics , Receptors, Steroid/metabolism
13.
Front Public Health ; 12: 1356826, 2024.
Article En | MEDLINE | ID: mdl-38566794

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Rifampin/pharmacology , Ethiopia , Cross-Sectional Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/microbiology , Mutation , Genotype , Fluoroquinolones
14.
mBio ; 15(5): e0255223, 2024 May 08.
Article En | MEDLINE | ID: mdl-38567992

Since the discovery of extracellular vesicles (EVs) in mycobacterial species 15 years back, we have learned that this phenomenon is conserved in the Mycobacterium genus and has critical roles in bacterial physiology and host-pathogen interactions. Mycobacterium tuberculosis (Mtb), the tuberculosis (TB) causative agent, produces EVs both in vitro and in vivo including a diverse set of biomolecules with demonstrated immunomodulatory effects. Moreover, Mtb EVs (MEVs) have been shown to possess vaccine properties and carry biomarkers with diagnostic capacity. Although information on MEV biogenesis relative to other bacterial species is scarce, recent studies have shed light on how MEVs originate and are released to the extracellular space. In this minireview, we discuss past and new information about the vesiculogenesis phenomenon in Mtb, including biogenesis, MEV cargo, aspects in the context of host-pathogen interactions, and applications that could help to develop effective tools to tackle the disease.


Extracellular Vesicles , Host-Pathogen Interactions , Mycobacterium tuberculosis , Tuberculosis , Extracellular Vesicles/metabolism , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis/diagnosis , Animals , Biomarkers , Mycobacterium/genetics , Mycobacterium/metabolism
15.
ACS Infect Dis ; 10(5): 1654-1663, 2024 May 10.
Article En | MEDLINE | ID: mdl-38578697

MicroRNA-mediated metabolic reprogramming recently has been identified as an important strategy for Mycobacterium tuberculosis (Mtb) to evade host immune responses. However, it is unknown what role microRNA-144-3p (miR-144-3p) plays in cellular metabolism during Mtb infection. Here, we report the meaning of miR-144-3p-mediated lipid accumulation for Mtb-macrophage interplay. Mtb infection was shown to upregulate the expression of miR-144-3p in macrophages. By targeting peroxisome proliferator-activated receptor α (PPARα) and ATP-binding cassette transporter A1 (ABCA1), miR-144-3p overexpression promoted lipid accumulation and bacterial survival in Mtb-infected macrophages, while miR-144-3p inhibition had the opposite effect. Furthermore, reprogramming of host lipid metabolism by miR-144-3p suppressed autophagy in response to Mtb infection. Our findings uncover that miR-144-3p regulates host metabolism and immune responses to Mtb by targeting PPARα and ABCA1, suggesting a potential host-directed tuberculosis therapy by targeting the interface of miRNA and lipid metabolism.


ATP Binding Cassette Transporter 1 , Autophagy , Lipid Metabolism , Macrophages , MicroRNAs , Mycobacterium tuberculosis , PPAR alpha , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Mycobacterium tuberculosis/genetics , Humans , Macrophages/microbiology , Macrophages/metabolism , Tuberculosis/microbiology , Animals , Mice , Host-Pathogen Interactions
16.
PLoS Pathog ; 20(4): e1012124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38635841

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments.


Biofilms , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Transcriptome , Biofilms/growth & development , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Adaptation, Physiological/genetics , Humans , Tuberculosis/microbiology , Tuberculosis/genetics
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 330-336, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645872

Objective: To express the protein enconded by the Rv3432c gene of Mycobacterium tuberculosis (M.tb) in vitro by prokaryotic expression, to analyze the structure of the Rv3432c protein by using bioinformatics software, and to explore for new drug targets against M.tb. Methods: The Rv3432c gene was amplified by PCR using the genomic DNA of the inactivated M.tb strain H37Rv as the template and a recombinant plasmid was constructed with the expression vector pET-28a. The expression products were analyzed by SDS-PAGE and purified using affinity chromatography. The biological properties of Rv3432c were analyzed with Protparam, the Pfam online tool, SOMPA, Protscale, TMHMM Signalp 6.0, NetPhos3.1, SUMOsp 2.0, and SWISS-MODEL. Results: pET-28a-Rv3432c recombinant plasmid sequencing results were fully consistent with those of the target gene. SDS-PAGE analysis showed that the fusion protein existed in the form of a soluble protein with a relative molecular mass of about 55×103, which matched the expected size. ProtParam analysis showed that the Rv3432c protein was hydrophilic (showing a GRAVY value of -0.079). Rv3432c was a protein with no transmembrane structural domains or signal peptide. The secondary structure of Rv3432c mainly consisted of random coils (39.78%) and α-helix (39.57%) and was relatively loosely structured. Conclusion: We successfully constructed a prokaryotic expression plasmid of the Rv3432c protein and analyzed its structure using bioinformatics, laying the foundation for further research on the role of Rv3432c in the pathogenesis and progression of tuberculosis as well as the identification of new drug targets against M.tb.


Bacterial Proteins , Computational Biology , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Computational Biology/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors , Cloning, Molecular
18.
Sci Rep ; 14(1): 9287, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653771

The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain ("matched infection") or with strains representative of other MTBC lineages ("mismatched infection"). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1ß, and IL-1ß compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host-pathogen interaction in human tuberculosis.


Macrophages , Mycobacterium tuberculosis , Phylogeny , Tuberculosis , Humans , Tanzania , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/immunology , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Adult , Male , Female , Genotype
19.
Emerg Microbes Infect ; 13(1): 2348505, 2024 Dec.
Article En | MEDLINE | ID: mdl-38686553

China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.


Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/classification , Male , Adult , Female , Middle Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Cross-Sectional Studies , Retrospective Studies , Young Adult , Risk Factors , Adolescent , Aged , Rifampin/pharmacology , Antitubercular Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial
20.
J Cell Mol Med ; 28(8): e18279, 2024 Apr.
Article En | MEDLINE | ID: mdl-38634203

The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.


Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Pyrazinamide/chemistry , Pyrazinamide/metabolism , Pyrazinamide/pharmacology , Mycobacterium tuberculosis/genetics , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests
...